On convergence, continuity and compactness

Carmine-Emanuele Cella

June 23, 2023

Abstract

This short note collects several definitions and theorems (without proof) about convergence, continuity and compactness. It is intended to be used as a self-contained reference designed to give an overview of the topics from the ground up. The concepts are examined in the context of sequences, single and multi-variable functions and topological spaces.

1 Sets and functions

Definition 1. A set is an unordered collection of distinct elements.

If an element a belongs to the set A we write $a \in A$, otherwise we write $a \notin A$. Given two sets A and B, their *union* is written $A \cup B$ while their *intersection* is written $A \cap B$. If A is a included in or equal to B, we write $A \subseteq B$.

Definition 2 (Numbers). We define:

- natural numbers the set $\mathbb{N} = \{1, 2, 3, \dots, n\}^1$
- integer numbers the set $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm n\},\$
- rational numbers the set $\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\}$
- real numbers the set $\mathbb{R} = {\mathbb{Q} \cup \mathbb{I}}$ where \mathbb{I} is the set of all numbers that cannot be expressed with fractions.

Numbers can be *ordered*: given two numbers a, b it is possible to decide which of the two is smaller: $a \leq b$ means that a is smaller or equal than b.

Definition 3. A set $A \subseteq \mathbb{R}$ is bounded above if there exist a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called upper bound for A. The lower bound is similarly defined.

Definition 4. The number $s \in \mathbb{R}$ is a least upper bound or supremum for $A \subseteq \mathbb{R}$ if:

- s is an upper bound for A;
- if b is an upper bound for A, then $s \leq b$.

The greatest lower bound or infimum is similarly defined.

Axiom 1 (Completness of \mathbb{R}). Every nonempty set of real numbers that is bounded above has a least upper bound.

Definition 5. A function $f : X \to Y$ is the assignment of an element of the set Y (codomain) to each element of the set X (domain). The elements of Y that are associated by the function are called the range of f.

A function $f: X \to Y$ is called *injective (one-to-one)* if elements of X have distinct images in Y. The function f is called *surjective (onto)* if for any $y \in Y$ there exists at least a $x \in X$ such as y = f(x). If a function f is at the same time injective and surjective that it is called *bijective*. If there is a bijection from A onto B then A and B are said to have equal cardinality, and we write $A \sim B$.

Definition 6. A set S is:

- finite if it empty or for some $n \in \mathbb{N}$ we have $S \sim \{1, \ldots, \}$.
- infinite *if it is not finite*.
- denumerable if $S \sim \mathbb{N}$.
- countable if it is finite or denumerable.
- uncountable *if it is not countable*.

Theorem 1. \mathbb{R} is uncountable.

An important function that will be used below is the *absolute value*.

¹From now on we will assume an intuitive understanding of the symbols 0, 1, 2, 3, ... and of the symbols \pm (plus or minus), = (equal) and \neq (not equal).

Definition 7 (Absolute value). The absolute value of a real number x is the function indicated as |x| and defined as:

$$|x| = \begin{cases} x & if \quad x \ge 0\\ -x & if \quad x < 0. \end{cases}$$
(1)

2 Sequences

Definition 8. A sequence (a_n) is a function whose domain is \mathbb{N} .

Definition 9 (Convergence). A sequence (a_n) converges to a real number a if, for every $\epsilon > 0$, there exists an $n \in N$ such that for $n \leq N$ it follows that $|a_n - n| < \epsilon$.

The number a is called the *limit* of the sequence and it is usually denotated either by $\lim a_n = a$ or by $(a_n) \to a^2$.

Theorem 2. Every convergent sequence is bounded.

Definition 10. Let (an) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < n_4 < n_5 < \ldots$ be an increasing sequence of natural numbers. Then the sequence $(a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, a_{n_5}, \ldots)$ is called a subsequence of (a_n) and is denoted by (a_{n_k}) , where $k \in N$ indexes the subsequence.

Theorem 3. Subsequences of a convergent sequence converge to the same limit as the original sequence.

Theorem 4 (Bolzano-Weierstrass). Every bounded sequence contains a convergent subsequence.

3 Real single-variable functions

In this section, all the functions will be of the type $f : \mathbb{R} \to \mathbb{R}$.

3.1 Limits and continuity

Definition 11. The function f(x) has limit L if, for any $\epsilon > 0$ there exists $\delta > 0$ such that for all x with $0 < |x - a| < \delta$ we have $|f(x) - L| < \epsilon$.

We then write:

$$L = \lim f(x). \tag{2}$$

Intuitively, the function f(x) has a limit L at a point a if, for numbers x near a, the value of the function approaches the number L.

Definition 12. The function f(x) is said to be continuous at a if its limit for $x \to a$ is equal to f(a):

$$\lim_{x \to a} f(x) = f(a). \tag{3}$$

In other words, for any $\epsilon > 0$, there exists $\delta > 0$ such that for all x with $0 < |x - a| < \delta$ we have $|f(x) - f(a)| < \epsilon$.

3.2 Differentiation and integration

Definition 13. The function f(x) is said to be differentiable if the limit:

$$L = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \tag{4}$$

exists.

This limit is called the *derivative* of f and is denoted by f(a)' or $\frac{df}{dx}(a)$. Intuitively, the derivative of a function gives the slope of the tangent line to the curve y = f(x).

Let f(x) be a real-valued function whose domain is the closed interval [a, b]. The partitions Δt of the interval [a, b] are given by the rectangles whose area is:

$$\Delta t = \frac{b-a}{n} \tag{5}$$

for each positive integer n. As such, $t_0 = a, t_1 = t_0 + \Delta t, \ldots, t_n = t_{n-1} + \Delta t = b$. Let l_k and u_k two points in the range $[t_{k-1}, t_k]$ such that: $f(l_k) \leq f(t)$ and $f(u_k) \geq f(t)$.

²The symbol \rightarrow can be read as *tends to* or *approaches*.

Definition 14. The lower sum L(f, n) of f(x) is given by:

$$L(f,n) = \sum_{k=1}^{N} f(l_k) \Delta t.$$
(6)

Similarly, the upper sum U(f, n) of f(x) is given by:

$$U(f,n) = \sum_{k=1}^{N} f(u_k) \Delta t.$$
(7)

In other words, L(f, n) is the sum of the rectangles below the curve y = f(x), while U(f, n) is the sum of the rectangles above the curve.

Definition 15. The function f(x) on the closed interval [a, b] is said to be integrable if the following two limits exist and are equal:

$$\lim_{n \to \infty} L(f, n) = \lim_{n \to \infty} U(f, n).$$
(8)

This limit is called *integral* of f(x) and is denoted by:

$$\int_{a}^{b} f(x) dx. \tag{9}$$

Intuitively, the integral of f(x) represents the area under the curve y = f(x) above the x-axis.

Theorem 5 (Fundamental theorem of calculus). Let f(x) be a continuous function defined on the closed interval [a, b] and let

$$F(x) = \int_{a}^{x} f(t)dt \tag{10}$$

be its integral. The function F(x) is differentiable and:

$$\frac{dF(x)}{dx} = \frac{d\int_a^x f(t)}{dx} = f(x).$$
(11)

If G(x) is a differentiable function defined on the closed interval [a, b] and its derivative is f(x), then:

$$\int_{a}^{b} f(x)dx = G(b) - G(a).$$
(12)

3.3 Convergence

Definition 16. A sequence of functions $f_n : [a, b] \to \mathbb{R}$ converges pointwise to a function $f(x) : [a, b] \to \mathbb{R}$ if for all $\alpha \in [a, b]$ and given $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$, we have $|f(\alpha) - f_n(\alpha)| < \epsilon$.

Intuitively, a sequence of functions $f_n(x)$ will converge pointwise to a function f(x) if, given any a, eventually (for huge n) the numbers $f_n(a)$ become close to f(a). Note the pointwise limit of continuous functions need not to be continuous.

Definition 17. A sequence of functions $f_n : [a, b] \to \mathbb{R}$ will converge uniformly to a function $f : [a, b] \to \mathbb{R}$ if given any $\epsilon > 0$, there is a positive integer N such that for all $n \ge N$, we have $|f(x) - f_n(x)| < \epsilon$ for all points x.

Intuitively, if there is a *tube* of width 2ϵ centered around f(x), all the functions $f_n(x)$ will eventually fit inside it.

Theorem 6 (Uniform limit). Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of continuous functions converging uniformly to a function f(x). Then f(x) will be continuous.

4 Real vector-valued functions

Definition 18. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called vector-valued since for any vector $x \in \mathbb{R}^n$, the value of f(x) is a vector in \mathbb{R}^m .

In this section, all the functions will be of the type $f : \mathbb{R}^n \to \mathbb{R}^m$.

4.1 Limits and continuity

Definition 19. The function $f : \mathbb{R}^n \to \mathbb{R}^m$ has limit $L = (L_1, \ldots, L_m) \in \mathbb{R}^m$ at the point $a = (a_1, \cdots, a_n) \in \mathbb{R}^n$ if given any $\epsilon > 0$, there is some $\delta > 0$ such that for all $x \in \mathbb{R}^n$, if $0 < |x-a| < \delta$, we have $|f(x) - L| < \epsilon$.

This limit is denoted by $\lim_{x \to a} f(x) = L$.

Definition 20. The function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be continuous at a point $a \in \mathbb{R}^n$ if $\lim_{x \to a} f(x) = f(a)$. Both the definitions of limit and continuity rely on the existence of a distance (norm).

4.2 Derivative and Jacobians

Definition 21. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at a point $a \in \mathbb{R}^n$ if there is an $m \times n$ maxtrix $A : \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{x \to a} \frac{|f(x) - f(a) - A \cdot (x - a)|}{|x - a|} = 0.$$
(13)

If this limit exists, the matrix A is denoted by Df(a) and is called the *Jacobian*. This definition agrees with the usual definition of derivative for a function $f : \mathbb{R} \to \mathbb{R}$.

Theorem 7. Let the function $f : \mathbb{R}^n \to \mathbb{R}^m$ be made by m differentiable functions $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ so that:

$$f(x_1, \dots, x_n) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{bmatrix}.$$
(14)

Then f is differentiable and the Jacobian is:

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
(15)

where $\frac{\partial f_m}{\partial x_m}$ is the partial derivative of f along dimension m.

Theorem 8 (Chain rule). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ be differentiable functions. Then the composition function

$$g \circ f : \mathbb{R}^n \to \mathbb{R}^l \tag{16}$$

is also differentiable with derivative given by: if f(a) = b, then

$$D(g \circ f)(a) = D(g)(b) \cdot D(f)(a).$$
(17)

In other words, to find the derivative of the composition $g \circ f$, we need to multiply the Jacobian matrix for g times the Jacobian matrix for f.

The Jacobian Df(a) can be thought of as a linear map from $\mathbb{R}^n \to \mathbb{R}^m$ and f(a) as a translation. Thus the vector y = f(x) can be approximated by:

$$y \approx f(a) + Df(a) \cdot (x - a). \tag{18}$$

4.3 Inverse functions

In equation 18 we have seen that vector-valued functions can be approximated a matrix, the Jacobian. In general, the connection between the properties of matrices and the properties of vector-valued functions is very important. For example, if the Jacobian is invertible, then the original vector-valued function is also have an inverse, at least locally.

Definition 22 (Open neighborhood). By an open neighborhood U of a point $a \in \mathbb{R}^n$, we mean that given any $a \in U$, there is a $\epsilon > 0$ such that:

$$\{x : |x-a| < \epsilon\} \in U. \tag{19}$$

Theorem 9 (Inverse function). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued continuously differentiable function, for which det $Df(a) \neq 0$, at some point $a \in \mathbb{R}^n$. Then there is an open neighborhood U of $a \in \mathbb{R}^n$ and and an open neighborhood V of $f(a) \in \mathbb{R}^n$ such that $f : U \to V$ is one to one, onto and has a differentiable inverse $g : V \to U$.

In other words, $g \circ f : U \to U$ is the identity and $f \circ g : V \to V$ is the identity.

For the case of $f : \mathbb{R} \to \mathbb{R}$, it is easy to have an intuitive interpretation of the *Inverse function* theorem. A derivative can be thought of as a the slope of the tangent line to a f. If the slope is zero, then the tangent is parallel to the x-axis (in other words, it is horizontal). Such a line is a constant and can be the derivative of an infinite number of functions, so f is not invertible.

5 Topological interpretation

Many of the definitions and results presented so far, can be reinterpreted in a more general way with the language of topology. The advantage of this interpretation is that a specific problem can be harder to solve than some abstract generalisation of it.

5.1 Topological spaces

Definition 23 (Topological space). Let X be a set of points. A collection of subsets $U = \{U_{\alpha}\}$ forms a topology on X if:

- 1. Any arbitrary union of the U_{α} is another set in the collection U.
- 2. The intersection of any finite number of sets U_{α} in the collection U is another set in U.
- 3. Both the empty set \emptyset and the whole space X must be in U.

The pair (X, U) is called a topological space.

Definition 24 (Open and closed sets). The sets U_{α} in the collection U are called open sets. A set C is closed if its complement X - C is open.

Definition 25. Let A be a subset of a topological space X. The induced topology on A is described by letting the open sets on A be all the sets of the form $U \cap A$, where U is an open set in X.

Definition 26. A collection $\Sigma = \{U_{\alpha}\}$ of open sets is called an open cover of a subset A if A is contained in the union of the U_{α} .

Definition 27 (Compactness). The subset A of a topological space X is compact if given any open cover of A, there is a finite subcover.

This means that if $\Sigma = \{U_{\alpha}\}$ is an open cover of A in X, then A is compact if it is included in a finite union of n elements of U_{α} :

 $A \subset (U_1 \cup U_2 \cup \ldots \cup U_n). \tag{20}$

Definition 28. A topological space X is Hausdorff if given any two points $x_1, x_2 \in X$, there are two open sets U_1 and U_2 , with $x_1 \in U_1$ and $x_2 \in U_2$, whose intersection is empty.

In other terms, X is Hausdorff if points can be separated from each other by disjoint open sets.

Definition 29 (Continuity). A function $f : X \to Y$ is continuous, where X and Y are two topological spaces, if given any open set U in Y, then the inverse image $f^{-1}(U)$ in X must be open.

Definition 30. A topological space X is connected if it is not possible to find two open sets U and V in X with $X = U \cup V$ and $U \cap V = \emptyset$.

5.1.1 Bases for a topology

Topological spaces can have a *basis*; the usual interpretation of this word refers to a list of vectors in a vector space that generates uniquely the entire vector space. In a topology, a basis is a collection of open sets that generate the entire topology.

Definition 31. Let X be a topological space. A collection of open sets forms a basis for the topology if every open set in X is the (possibly infinite) union of sets from the collection.

Definition 32. A topological space is second countable if it has a basis with a countable number of elements.

5.2 Metric spaces

Any set that has an associatoed notion of distance (*metric*) automatically has a topology.

Definition 33. A metric on a set X is a function:

$$\rho: X \times X \to \mathbb{R} \tag{21}$$

such that for all points $x, y, z \in X$ we have:

- $\rho(x,y) \ge 0$ and $\rho(x,y) = 0$ if and only if x = y.
- $\rho(x,y) = \rho(y,x).$
- (triangle inequality) $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Definition 34 (Metric space). The set X with its metric ρ is called a metric space and is denotated by (X, ρ) .

Definition 35. A set U in X is open if for all points $a \in U$, there is some real number $\epsilon > 0$ such that

$$\{x: |x-a| < \epsilon\} \tag{22}$$

is contained in U.

5.3 Standard topology on \mathbb{R}^n

The set of real numbers \mathbb{R} has a natural (Euclidian) notion of distance:

$$|a-b| = \sqrt{(a_1 - b_1)^2 + \ldots + (a_n - b_b)^2)}$$
(23)

where $a, b \in \mathbb{R}^n$.

Using this distance, it is possible to create equivalent definitions of open/closed sets and continuity for \mathbb{R}^n , to create the so called *standard topology on* \mathbb{R}^n .

Definition 36. A set U in \mathbb{R}^n will be open if given any $a \in \mathbb{R}^n$, there is a real number $\epsilon > 0$ such that:

$$\{x: |x-a| < \epsilon\} \tag{24}$$

is contained in U.

From this definition it follows that sets of the form $(a, b) = \{x : a < x < b\}$ are open, while sets of the form $[a, b] = \{x : a \le x \le b\}$ are closed.

Definition 37 (Standard topology). The collection of all open sets $(a, b) = \{x : a < x < b\}$ with $a, b \in \mathbb{R}^n$ is called the standard topology on \mathbb{R}^n .

Theorem 10. The standard topology on \mathbb{R}^n is Hausdorff.

Theorem 11 (Continuity). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function. For all $a \in \mathbb{R}^n$:

$$\lim_{x \to a} f(x) = f(a) \tag{25}$$

if and only if for any open set $U \in \mathbb{R}^m$, the inverse image $f^{-1}(U)$ is open in \mathbb{R}^n .

Definition 38. A subset A is bounded in \mathbb{R}^n if there is some fixed real number r such that for all $x \in A$,

$$|x| < r. \tag{26}$$

Examples The interval (a, b) is bounded but not closed; the interval $[a, \infty)$ is closed but not bounded. For the standard topology on \mathbb{R}^n , compactness is equivalent to the intuitive idea of being both closed and bounded. This equivalence is the goal of the following theorem.

Theorem 12 (Heine-Borel). A subset A of \mathbb{R}^n is compact if and only if it is closed and bounded.

Theorem 13. On the real line \mathbb{R} , a closed interval [a, b] is compact.

Theorem 14. A subset A in \mathbb{R}^n is compact if every infinite sequence (x_n) of points in A has a subsequence converging to a point in A.

In other words, if (x_n) is a collection of points in A, there must be a point $p \in A$ and a subsequence x_{n_k} with $\lim_{k\to\infty} x_{n_k} = p$.

References

[1] T. Garrity, All the math you missed (but need to know for graduate school), Cambridge, 2002.

- [2] S. Abbott, Understanding analysis, Springer, second edition, 2015.
- [3] C. Pugh, Real mathematical analysis, Springer, second edition, 2015.