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Abstract

This short note collects several definitions and theorems (without proof) about convergence, continuity
and compactness. It is intended to be used as a self-contained reference designed to give an overview of the
topics from the ground up. The concepts are examined in the context of sequences, single and multi-variable
functions and topological spaces.

1 Sets and functions

Definition 1. A set is an unordered collection of distinct elements.

If an element a belongs to the set A we write a ∈ A, otherwise we write a /∈ A. Given two sets A and B,
their union is written A ∪ B while their intersection is written A ∩ B. If A is a included in or equal to B,
we write A ⊆ B.

Definition 2 (Numbers). We define:

• natural numbers the set N ={1, 2, 3, . . . , n}1

• integer numbers the set Z = {0,±1,±2, . . . ,±n},
• rational numbers the set Q = {m

n
: m,n ∈ Z, n ̸= 0}

• real numbers the set R = {Q ∪ I} where I is the set of all numbers that cannot be expressed with
fractions.

Numbers can be ordered : given two numbers a, b it is possible to decide which of the two is smaller:
a ≤ b means that a is smaller or equal than b.

Definition 3. A set A ⊆ R is bounded above if there exist a number b ∈ R such that a ≤ b for all a ∈ A.
The number b is called upper bound for A. The lower bound is similarly defined.

Definition 4. The number s ∈ R is a least upper bound or supremum for A ⊆ R if:

• s is an upper bound for A;

• if b is an upper bound for A, then s ≤ b.

The greatest lower bound or infimum is similarly defined.

Axiom 1 (Completness of R). Every nonempty set of real numbers that is bounded above has a least upper
bound.

Definition 5. A function f : X → Y is the assignment of an element of the set Y (codomain) to each
element of the set X (domain). The elements of Y that are associated by the function are called the range
of f .

A function f : X → Y is called injective (one-to-one) if elements of X have distinct images in Y . The
function f is called surjective (onto) if for any y ∈ Y there exists at least a x ∈ X such as y = f(x). If a
function f is at the same time injective and surjective that it is called bijective. If there is a bijection from
A onto B then A and B are said to have equal cardinality, and we write A ∼ B.

Definition 6. A set S is:

• finite if it empty or for some n ∈ N we have S ∼ {1, . . . , }.
• infinite if it is not finite.

• denumerable if S ∼ N.
• countable if it is finite or denumerable.

• uncountable if it is not countable.

Theorem 1. R is uncountable.

An important function that will be used below is the absolute value.

1From now on we will assume an intuitive understanding of the symbols 0, 1, 2, 3, . . . and of the symbols ± (plus or minus), =
(equal) and ̸= (not equal).
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Definition 7 (Absolute value). The absolute value of a real number x is the function indicated as |x| and
defined as:

|x| =

{
x if x ≥ 0

−x if x < 0.
(1)

2 Sequences

Definition 8. A sequence (an) is a function whose domain is N.
Definition 9 (Convergence). A sequence (an) converges to a real number a if, for every ϵ > 0, there exists
an n ∈ N such that for n ≤ N it follows that |an − n| < ϵ.

The number a is called the limit of the sequence and it is usually denotated either by lim an = a or by
(an) → a.2

Theorem 2. Every convergent sequence is bounded.

Definition 10. Let (an) be a sequence of real numbers, and let n1 < n2 < n3 < n4 < n5 < . . . be an in-
creasing sequence of natural numbers. Then the sequence (an1 , an2 , an3 , an4 , an5 , . . .) is called a subsequence
of (an) and is denoted by (ank ), where k ∈ N indexes the subsequence.

Theorem 3. Subsequences of a convergent sequence converge to the same limit as the original sequence.

Theorem 4 (Bolzano-Weierstrass). Every bounded sequence contains a convergent subsequence.

3 Real single-variable functions

In this section, all the functions will be of the type f : R → R.

3.1 Limits and continuity

Definition 11. The function f(x) has limit L if, for any ϵ > 0 there exists δ > 0 such that for all x with
0 < |x− a| < δ we have |f(x)− L| < ϵ.

We then write:
L = lim

x→a
f(x). (2)

Intuitively, the function f(x) has a limit L at a point a if, for numbers x near a, the value of the function
approaches the number L.

Definition 12. The function f(x) is said to be continuous at a if its limit for x → a is equal to f(a):

lim
x→a

f(x) = f(a). (3)

In other words, for any ϵ > 0, there exists δ > 0 such that for all x with 0 < |x − a| < δ we have
|f(x)− f(a)| < ϵ.

3.2 Differentiation and integration

Definition 13. The function f(x) is said to be differentiable if the limit:

L = lim
x→a

f(x)− f(a)

x− a
(4)

exists.

This limit is called the derivative of f and is denoted by f(a)′ or df
dx

(a). Intuitively, the derivative of a
function gives the slope of the tangent line to the curve y = f(x).

Let f(x) be a real-valued function whose domain is the closed interval [a, b]. The partitions ∆t of the
interval [a, b] are given by the rectangles whose area is:

∆t =
b− a

n
(5)

for each positive integer n. As such, t0 = a, t1 = t0 +∆t, . . . , tn = tn−1 +∆t = b. Let lk and uk two points
in the range [tk−1, tk] such that: f(lk) ≤ f(t) and f(uk) ≥ f(t).

2The symbol → can be read as tends to or approaches.
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Definition 14. The lower sum L(f, n) of f(x) is given by:

L(f, n) =

N∑
k=1

f(lk)∆t. (6)

Similarly, the upper sum U(f, n) of f(x) is given by:

U(f, n) =

N∑
k=1

f(uk)∆t. (7)

In other words, L(f, n) is the sum of the rectangles below the curve y = f(x), while U(f, n) is the sum
of the rectangles above the curve.

Definition 15. The function f(x) on the closed interval [a, b] is said to be integrable if the following two
limits exist and are equal:

lim
n→∞

L(f, n) = lim
n→∞

U(f, n). (8)

This limit is called integral of f(x) and is denoted by:∫ b

a

f(x)dx. (9)

Intuitively, the integral of f(x) represents the area under the curve y = f(x) above the x-axis.

Theorem 5 (Fundamental theorem of calculus). Let f(x) be a continuous function defined on the closed
interval [a, b] and let

F (x) =

∫ x

a

f(t)dt (10)

be its integral. The function F (x) is differentiable and:

dF (x)

dx
=

d
∫ x

a
f(t)

dx
= f(x). (11)

If G(x) is a differentiable function defined on the closed interval [a, b] and its derivative is f(x), then:∫ b

a

f(x)dx = G(b)−G(a). (12)

3.3 Convergence

Definition 16. A sequence of functions fn : [a, b] → R converges pointwise to a function f(x) : [a, b] →
R if for all α ∈ [a, b] and given ϵ > 0 there is a positive integer N such that for all n ≥ N , we have
|f(α)− fn(α)| < ϵ.

Intuitively, a sequence of functions fn(x) will converge pointwise to a function f(x) if, given any a,
eventually (for huge n) the numbers fn(a) become close to f(a). Note the pointwise limit of continuous
functions need not to be continuous.

Definition 17. A sequence of functions fn : [a, b] → R will converge uniformly to a function f : [a, b] → R
if given any ϵ > 0, there is a positive integer N such that for all n ≥ N , we have |f(x)− fn(x)| < ϵ for all
points x.

Intuitively, if there is a tube of width 2ϵ centered around f(x), all the functions fn(x) will eventually fit
inside it.

Theorem 6 (Uniform limit). Let fn : [a, b] → R be a sequence of continuous functions converging uniformly
to a function f(x). Then f(x) will be continuous.

4 Real vector-valued functions

Definition 18. A function f : Rn → Rm is called vector-valued since for any vector x ∈ Rn, the value of
f(x) is a vector in Rm.

In this section, all the functions will be of the type f : Rn → Rm.

4.1 Limits and continuity

Definition 19. The function f : Rn → Rm has limit L = (L1, . . . , Lm) ∈ Rm at the point a = (a1, · · · , an) ∈
Rn if given any ϵ > 0, there is some δ > 0 such that for all x ∈ Rn, if 0 < |x−a| < δ, we have |f(x)−L| < ϵ.

This limit is denoted by limx→a f(x) = L.

Definition 20. The function f : Rn → Rm is said to be continuous at a point a ∈ Rn if limx→a f(x) = f(a).

Both the definitions of limit and continuity rely on the existence of a distance (norm).
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4.2 Derivative and Jacobians

Definition 21. A function f : Rn → Rm is said to be differentiable at a point a ∈ Rn if there is an m× n
maxtrix A : Rn → Rm such that:

lim
x→a

|f(x)− f(a)−A · (x− a)

|x− a| = 0. (13)

If this limit exists, the matrix A is denoted by Df(a) and is called the Jacobian. This definition agrees
with the usual definition of derivative for a function f : R → R.
Theorem 7. Let the function f : Rn → Rm be made by m differentiable functions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)
so that:

f(x1, . . . , xn) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 . (14)

Then f is differentiable and the Jacobian is:

Df(x) =


∂f1
∂x1

· · · ∂fn
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (15)

where ∂fm
∂xn

is the partial derivative of f along dimension m.

Theorem 8 (Chain rule). Let f : Rn → Rm and g : Rm → Rl be differentiable functions. Then the
composition function

g ◦ f : Rn → Rl (16)

is also differentiable with derivative given by: if f(a) = b, then

D(g ◦ f)(a) = D(g)(b) ·D(f)(a). (17)

In other words, to find the derivative of the composition g ◦ f , we need to multiply the Jacobian matrix
for g times the Jacobian matrix for f .

The Jacobian Df(a) can be thought of as a linear map from Rn → Rm and f(a) as a translation. Thus
the vector y = f(x) can be approximated by:

y ≈ f(a) +Df(a) · (x− a). (18)

4.3 Inverse functions

In eqution 18 we have seen that vector-valued functions can be approximated a matrix, the Jacobian. In
general, the connection between the properties of matrices and the properties of vector-valued functions is
very important. For example, if the Jacobian is invertible, then the original vector-valued function is also
have an inverse, at least locally.

Definition 22 (Open neighborhood). By an open neighborhood U of a point a ∈ Rn, we mean that given
any a ∈ U , there is a ϵ > 0 such that:

{x : |x− a| < ϵ} ∈ U. (19)

Theorem 9 (Inverse function). Let f : Rn → Rm be a vector-valued continuously differentiable function,
for which detDf(a) ̸= 0, at some point a ∈ Rn. Then there is an open neighborhood U of a ∈ Rn and and
an open neighborhood V of f(a) ∈ Rn such that f : U → V is one to one, onto and has a differentiable
inverse g : V → U .

In other words, g ◦ f : U → U is the identity and f ◦ g : V → V is the identity.
For the case of f : R → R, it is easy to have an intuitive intepretation of the Inverse function theorem.

A derivative can be thought of as a the slope of the tangent line to a f . If the slope is zero, then the tangent
is parallel to the x-axis (in other words, it is horizontal). Such a line is a constant and can be the derivative
of an infinite number of functions, so f is not invertible.

5 Topological interpretation

Many of the definitions and results presented so far, can be reinterpreted in a more general way with the
language of topology. The advantage of this interpretation is that a specific problem can be harder to solve
than some abstract generalisation of it.
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5.1 Topological spaces

Definition 23 (Topological space). Let X be a set of points. A collection of subsets U = {Uα} forms a
topology on X if:

1. Any arbitrary union of the Uα is another set in the collection U .

2. The intersection of any finite number of sets Uα in the collection U is another set in U .

3. Both the empty set ∅ and the whole space X must be in U .

The pair (X,U) is called a topological space.

Definition 24 (Open and closed sets). The sets Uα in the collection U are called open sets. A set C is
closed if its complement X − C is open.

Definition 25. Let A be a subset of a topological space X. The induced topology on A is described by
letting the open sets on A be all the sets of the form U ∩A, where U is an open set in X.

Definition 26. A collection Σ = {Uα} of open sets is called an open cover of a subset A if A is contained
in the union of the Uα.

Definition 27 (Compactness). The subset A of a topological space X is compact if given any open cover
of A, there is a finite subcover.

This means that if Σ = {Uα} is an open cover of A in X, then A is compact if it is included in a finite
union of n elements of Uα:

A ⊂ (U1 ∪ U2 ∪ . . . ∪ Un). (20)

Definition 28. A topological space X is Hausdorff if given any two points x1, x2 ∈ X, there are two open
sets U1 and U2, with x1 ∈ U1 and x2 ∈ U2, whose intersection is empty.

In other terms, X is Hausdorff if points can be separated from each other by disjoint open sets.

Definition 29 (Continuity). A function f : X → Y is continuous, where X and Y are two topological
spaces, if given any open set U in Y , then the inverse image f−1(U) in X must be open.

Definition 30. A topological space X is connected if it is not possible to find two open sets U and V in X
with X = U ∪ V and U ∩ V = ∅.

5.1.1 Bases for a topology

Topological spaces can have a basis; the usual interpretation of this word refers to a list of vectors in a vector
space that generates uniquely the entire vector space. In a topology, a basis is a collection of open sets that
generate the entire topology.

Definition 31. Let X be a topological space. A collection of open sets forms a basis for the topology if every
open set in X is the (possibly infinite) union of sets from the collection.

Definition 32. A topological space is second countable if it has a basis with a countable number of elements.

5.2 Metric spaces

Any set that has an associatoed notion of distance (metric) automatically has a topology.

Definition 33. A metric on a set X is a function:

ρ : X ×X → R (21)

such that for all points x, y, z ∈ X we have:

• ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y.

• ρ(x, y) = ρ(y, x).

• (triangle inequality) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 34 (Metric space). The set X with its metric ρ is called a metric space and is denotated by
(X, ρ).

Definition 35. A set U in X is open if for all points a ∈ U , there is some real number ϵ > 0 such that

{x : |x− a| < ϵ} (22)

is contained in U .
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5.3 Standard topology on Rn

The set of real numbers R has a natural (Euclidian) notion of distance:

|a− b| =
√

(a1 − b1)2 + . . .+ (an − bb)2) (23)

where a, b ∈ Rn.
Using this distance, it is possible to create equivalent definitions of open/closed sets and continuity for

Rn, to create the so called standard topology on Rn.

Definition 36. A set U in Rn will be open if given any a ∈ Rn, there is a real number ϵ > 0 such that:

{x : |x− a| < ϵ} (24)

is contained in U.

From this definition it follows that sets of the form (a, b) = {x : a < x < b} are open, while sets of the
form [a, b] = {x : a ≤ x ≤ b} are closed.

Definition 37 (Standard topology). The collection of all open sets (a, b) = {x : a < x < b} with a, b ∈ Rn

is called the standard topology on Rn.

Theorem 10. The standard topology on Rn is Hausdorff.

Theorem 11 (Continuity). Let f : Rn → Rm be a function. For all a ∈ Rn:

lim
x→a

f(x) = f(a) (25)

if and only if for any open set U ∈ Rm, the inverse image f−1(U) is open in Rn.

Definition 38. A subset A is bounded in Rn if there is some fixed real number r such that for all x ∈ A,

|x| < r. (26)

Examples The interval (a, b) is bounded but not closed; the interval [a,∞) is closed but not bounded.
For the standard topology on Rn, compactness is equivalent to the intuitive idea of being both closed

and bounded. This equivalence is the goal of the following theorem.

Theorem 12 (Heine-Borel). A subset A of Rn is compact if and only if it is closed and bounded.

Theorem 13. On the real line R, a closed interval [a, b] is compact.

Theorem 14. A subset A in Rn is compact if every infinite sequence (xn) of points in A has a subsequence
converging to a point in A.

In other words, if (xn) is a collection of points in A, there must be a point p ∈ A and a subsequence xnk

with limk→∞ xnk = p.
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