On convergence, continuity and compactness

Carmine-Emanuele Cella

June 23, 2023

Abstract

This short note collects several definitions and theorems (without proof) about convergence, continuity and compactness. It is intended to be used as a self-contained reference designed to give an overview of the topics from the ground up. The concepts are examined in the context of sequences, single and multi-variable functions and topological spaces.

1 Sets and functions

Definition 1. A set is an unordered collection of distinct elements.
If an element a belongs to the set A we write $a \in A$, otherwise we write $a \notin A$. Given two sets A and B, their union is written $A \cup B$ while their intersection is written $A \cap B$. If A is a included in or equal to B, we write $A \subseteq B$.
Definition 2 (Numbers). We define:

- natural numbers the set $\mathbb{N}=\{1,2,3, \ldots, n\}^{1}$
- integer numbers the set $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots, \pm n\}$,
- rational numbers the set $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}$
- real numbers the set $\mathbb{R}=\{\mathbb{Q} \cup \mathbb{I}\}$ where \mathbb{I} is the set of all numbers that cannot be expressed with fractions.

Numbers can be ordered: given two numbers a, b it is possible to decide which of the two is smaller: $a \leq b$ means that a is smaller or equal than b.
Definition 3. A set $A \subseteq \mathbb{R}$ is bounded above if there exist a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called upper bound for A. The lower bound is similarly defined.
Definition 4. The number $s \in \mathbb{R}$ is a least upper bound or supremum for $A \subseteq \mathbb{R}$ if:

- s is an upper bound for A;
- if b is an upper bound for A, then $s \leq b$.

The greatest lower bound or infimum is similarly defined.
Axiom 1 (Completness of \mathbb{R}). Every nonempty set of real numbers that is bounded above has a least upper bound.
Definition 5. A function $f: X \rightarrow Y$ is the assignment of an element of the set Y (codomain) to each element of the set X (domain). The elements of Y that are associated by the function are called the range of f.

A function $f: X \rightarrow Y$ is called injective (one-to-one) if elements of X have distinct images in Y. The function f is called surjective (onto) if for any $y \in Y$ there exists at least a $x \in X$ such as $y=f(x)$. If a function f is at the same time injective and surjective that it is called bijective. If there is a bijection from A onto B then A and B are said to have equal cardinality, and we write $A \sim B$.
Definition 6. A set S is:

- finite if it empty or for some $n \in \mathbb{N}$ we have $S \sim\{1, \ldots$,$\} .$
- infinite if it is not finite.
- denumerable if $S \sim \mathbb{N}$.
- countable if it is finite or denumerable.
- uncountable if it is not countable.

Theorem 1. \mathbb{R} is uncountable.
An important function that will be used below is the absolute value.

[^0]Definition 7 (Absolute value). The absolute value of a real number x is the function indicated as $|x|$ and defined as:

$$
|x|=\left\{\begin{array}{lll}
x & \text { if } & x \geq 0 \tag{1}\\
-x & \text { if } & x<0
\end{array}\right.
$$

2 Sequences

Definition 8. A sequence $\left(a_{n}\right)$ is a function whose domain is \mathbb{N}.
Definition 9 (Convergence). A sequence (a_{n}) converges to a real number a if, for every $\epsilon>0$, there exists an $n \in N$ such that for $n \leq N$ it follows that $\left|a_{n}-n\right|<\epsilon$.

The number a is called the limit of the sequence and it is usually denotated either by $\lim a_{n}=a$ or by $\left(a_{n}\right) \rightarrow a .^{2}$
Theorem 2. Every convergent sequence is bounded.
Definition 10. Let (an) be a sequence of real numbers, and let $n_{1}<n_{2}<n_{3}<n_{4}<n_{5}<\ldots$ be an increasing sequence of natural numbers. Then the sequence ($a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, a_{n_{4}}, a_{n_{5}}, \ldots$) is called a subsequence of (a_{n}) and is denoted by $\left(a_{n_{k}}\right)$, where $k \in N$ indexes the subsequence.
Theorem 3. Subsequences of a convergent sequence converge to the same limit as the original sequence.
Theorem 4 (Bolzano-Weierstrass). Every bounded sequence contains a convergent subsequence.

3 Real single-variable functions

In this section, all the functions will be of the type $f: \mathbb{R} \rightarrow \mathbb{R}$.

3.1 Limits and continuity

Definition 11. The function $f(x)$ has limit L if, for any $\epsilon>0$ there exists $\delta>0$ such that for all x with $0<|x-a|<\delta$ we have $|f(x)-L|<\epsilon$.

We then write:

$$
\begin{equation*}
L=\lim _{x \rightarrow a} f(x) . \tag{2}
\end{equation*}
$$

Intuitively, the function $f(x)$ has a limit L at a point a if, for numbers x near a, the value of the function approaches the number L.
Definition 12. The function $f(x)$ is said to be continuous at a if its limit for $x \rightarrow a$ is equal to $f(a)$:

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=f(a) . \tag{3}
\end{equation*}
$$

In other words, for any $\epsilon>0$, there exists $\delta>0$ such that for all x with $0<|x-a|<\delta$ we have $|f(x)-f(a)|<\epsilon$.

3.2 Differentiation and integration

Definition 13. The function $f(x)$ is said to be differentiable if the limit:

$$
\begin{equation*}
L=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{4}
\end{equation*}
$$

exists.
This limit is called the derivative of f and is denoted by $f(a)^{\prime}$ or $\frac{d f}{d x}(a)$. Intuitively, the derivative of a function gives the slope of the tangent line to the curve $y=f(x)$.

Let $f(x)$ be a real-valued function whose domain is the closed interval $[a, b]$. The partitions Δt of the interval $[a, b]$ are given by the rectangles whose area is:

$$
\begin{equation*}
\Delta t=\frac{b-a}{n} \tag{5}
\end{equation*}
$$

for each positive integer n. As such, $t_{0}=a, t_{1}=t_{0}+\Delta t, \ldots, t_{n}=t_{n-1}+\Delta t=b$. Let l_{k} and u_{k} two points in the range $\left[t_{k-1}, t_{k}\right]$ such that: $f\left(l_{k}\right) \leq f(t)$ and $f\left(u_{k}\right) \geq f(t)$.

[^1]Definition 14. The lower sum $L(f, n)$ of $f(x)$ is given by:

$$
\begin{equation*}
L(f, n)=\sum_{k=1}^{N} f\left(l_{k}\right) \Delta t . \tag{6}
\end{equation*}
$$

Similarly, the upper sum $U(f, n)$ of $f(x)$ is given by:

$$
\begin{equation*}
U(f, n)=\sum_{k=1}^{N} f\left(u_{k}\right) \Delta t \tag{7}
\end{equation*}
$$

In other words, $L(f, n)$ is the sum of the rectangles below the curve $y=f(x)$, while $U(f, n)$ is the sum of the rectangles above the curve.
Definition 15. The function $f(x)$ on the closed interval $[a, b]$ is said to be integrable if the following two limits exist and are equal:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L(f, n)=\lim _{n \rightarrow \infty} U(f, n) . \tag{8}
\end{equation*}
$$

This limit is called integral of $f(x)$ and is denoted by:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \tag{9}
\end{equation*}
$$

Intuitively, the integral of $f(x)$ represents the area under the curve $y=f(x)$ above the x -axis.
Theorem 5 (Fundamental theorem of calculus). Let $f(x)$ be a continuous function defined on the closed interval $[a, b]$ and let

$$
\begin{equation*}
F(x)=\int_{a}^{x} f(t) d t \tag{10}
\end{equation*}
$$

be its integral. The function $F(x)$ is differentiable and:

$$
\begin{equation*}
\frac{d F(x)}{d x}=\frac{d \int_{a}^{x} f(t)}{d x}=f(x) . \tag{11}
\end{equation*}
$$

If $G(x)$ is a differentiable function defined on the closed interval $[a, b]$ and its derivative is $f(x)$, then:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=G(b)-G(a) \tag{12}
\end{equation*}
$$

3.3 Convergence

Definition 16. A sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ converges pointwise to a function $f(x):[a, b] \rightarrow$ \mathbb{R} if for all $\alpha \in[a, b]$ and given $\epsilon>0$ there is a positive integer N such that for all $n \geq N$, we have $\left|f(\alpha)-f_{n}(\alpha)\right|<\epsilon$.

Intuitively, a sequence of functions $f_{n}(x)$ will converge pointwise to a function $f(x)$ if, given any a, eventually (for huge n) the numbers $f_{n}(a)$ become close to $f(a)$. Note the pointwise limit of continuous functions need not to be continuous.
Definition 17. A sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ will converge uniformly to a function $f:[a, b] \rightarrow \mathbb{R}$ if given any $\epsilon>0$, there is a positive integer N such that for all $n \geq N$, we have $\left|f(x)-f_{n}(x)\right|<\epsilon$ for all points x.

Intuitively, if there is a tube of width 2ϵ centered around $f(x)$, all the functions $f_{n}(x)$ will eventually fit inside it.
Theorem 6 (Uniform limit). Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of continuous functions converging uniformly to a function $f(x)$. Then $f(x)$ will be continuous.

4 Real vector-valued functions

Definition 18. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called vector-valued since for any vector $x \in \mathbb{R}^{n}$, the value of $f(x)$ is a vector in \mathbb{R}^{m}.

In this section, all the functions will be of the type $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

4.1 Limits and continuity

Definition 19. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has limit $L=\left(L_{1}, \ldots, L_{m}\right) \in \mathbb{R}^{m}$ at the point $a=\left(a_{1}, \cdots, a_{n}\right) \in$ \mathbb{R}^{n} if given any $\epsilon>0$, there is some $\delta>0$ such that for all $x \in \mathbb{R}^{n}$, if $0<|x-a|<\delta$, we have $|f(x)-L|<\epsilon$. This limit is denoted by $\lim _{x \rightarrow a} f(x)=L$.
Definition 20. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be continuous at a point $a \in \mathbb{R}^{n}$ if $\lim _{x \rightarrow a} f(x)=f(a)$. Both the definitions of limit and continuity rely on the existence of a distance (norm).

4.2 Derivative and Jacobians

Definition 21. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be differentiable at a point $a \in \mathbb{R}^{n}$ if there is an $m \times n$ maxtrix $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that:

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{\mid f(x)-f(a)-A \cdot(x-a)}{|x-a|}=0 . \tag{13}
\end{equation*}
$$

If this limit exists, the matrix A is denoted by $D f(a)$ and is called the Jacobian. This definition agrees with the usual definition of derivative for a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Theorem 7. Let the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be made by m differentiable functions $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$ so that:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \tag{14}\\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

Then f is differentiable and the Jacobian is:

$$
D f(x)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \tag{15}\\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

where $\frac{\partial f_{m}}{\partial x_{n}}$ is the partial derivative of f along dimension m.
Theorem 8 (Chain rule). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ be differentiable functions. Then the composition function

$$
\begin{equation*}
g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{l} \tag{16}
\end{equation*}
$$

is also differentiable with derivative given by: if $f(a)=b$, then

$$
\begin{equation*}
D(g \circ f)(a)=D(g)(b) \cdot D(f)(a) \tag{17}
\end{equation*}
$$

In other words, to find the derivative of the composition $g \circ f$, we need to multiply the Jacobian matrix for g times the Jacobian matrix for f.

The Jacobian $D f(a)$ can be thought of as a linear map from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f(a)$ as a translation. Thus the vector $y=f(x)$ can be approximated by:

$$
\begin{equation*}
y \approx f(a)+D f(a) \cdot(x-a) \tag{18}
\end{equation*}
$$

4.3 Inverse functions

In eqution 18 we have seen that vector-valued functions can be approximated a matrix, the Jacobian. In general, the connection between the properties of matrices and the properties of vector-valued functions is very important. For example, if the Jacobian is invertible, then the original vector-valued function is also have an inverse, at least locally.
Definition 22 (Open neighborhood). By an open neighborhood U of a point $a \in \mathbb{R}^{n}$, we mean that given any $a \in U$, there is a $\epsilon>0$ such that:

$$
\begin{equation*}
\{x:|x-a|<\epsilon\} \in U \tag{19}
\end{equation*}
$$

Theorem 9 (Inverse function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector-valued continuously differentiable function, for which $\operatorname{det} D f(a) \neq 0$, at some point $a \in \mathbb{R}^{n}$. Then there is an open neighborhood U of $a \in \mathbb{R}^{n}$ and and an open neighborhood V of $f(a) \in \mathbb{R}^{n}$ such that $f: U \rightarrow V$ is one to one, onto and has a differentiable inverse $g: V \rightarrow U$.

In other words, $g \circ f: U \rightarrow U$ is the identity and $f \circ g: V \rightarrow V$ is the identity.
For the case of $f: \mathbb{R} \rightarrow \mathbb{R}$, it is easy to have an intuitive intepretation of the Inverse function theorem. A derivative can be thought of as a the slope of the tangent line to a f. If the slope is zero, then the tangent is parallel to the x-axis (in other words, it is horizontal). Such a line is a constant and can be the derivative of an infinite number of functions, so f is not invertible.

5 Topological interpretation

Many of the definitions and results presented so far, can be reinterpreted in a more general way with the language of topology. The advantage of this interpretation is that a specific problem can be harder to solve than some abstract generalisation of it.

5.1 Topological spaces

Definition 23 (Topological space). Let X be a set of points. A collection of subsets $U=\left\{U_{\alpha}\right\}$ forms a topology on X if:

1. Any arbitrary union of the U_{α} is another set in the collection U.
2. The intersection of any finite number of sets U_{α} in the collection U is another set in U.
3. Both the empty set \emptyset and the whole space X must be in U.

The pair (X, U) is called a topological space.
Definition 24 (Open and closed sets). The sets U_{α} in the collection U are called open sets. A set C is closed if its complement $X-C$ is open.
Definition 25. Let A be a subset of a topological space X. The induced topology on A is described by letting the open sets on A be all the sets of the form $U \cap A$, where U is an open set in X.
Definition 26. A collection $\Sigma=\left\{U_{\alpha}\right\}$ of open sets is called an open cover of a subset A if A is contained in the union of the U_{α}.
Definition 27 (Compactness). The subset A of a topological space X is compact if given any open cover of A, there is a finite subcover.

This means that if $\Sigma=\left\{U_{\alpha}\right\}$ is an open cover of A in X, then A is compact if it is included in a finite union of n elements of U_{α} :

$$
\begin{equation*}
A \subset\left(U_{1} \cup U_{2} \cup \ldots \cup U_{n}\right) \tag{20}
\end{equation*}
$$

Definition 28. A topological space X is Hausdorff if given any two points $x_{1}, x_{2} \in X$, there are two open sets U_{1} and U_{2}, with $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$, whose intersection is empty.

In other terms, X is Hausdorff if points can be separated from each other by disjoint open sets.
Definition 29 (Continuity). A function $f: X \rightarrow Y$ is continuous, where X and Y are two topological spaces, if given any open set U in Y, then the inverse image $f^{-1}(U)$ in X must be open.
Definition 30. A topological space X is connected if it is not possible to find two open sets U and V in X with $X=U \cup V$ and $U \cap V=\emptyset$.

5.1.1 Bases for a topology

Topological spaces can have a basis; the usual interpretation of this word refers to a list of vectors in a vector space that generates uniquely the entire vector space. In a topology, a basis is a collection of open sets that generate the entire topology.
Definition 31. Let X be a topological space. A collection of open sets forms a basis for the topology if every open set in X is the (possibly infinite) union of sets from the collection.
Definition 32. A topological space is second countable if it has a basis with a countable number of elements.

5.2 Metric spaces

Any set that has an associatoed notion of distance (metric) automatically has a topology.
Definition 33. A metric on a set X is a function:

$$
\begin{equation*}
\rho: X \times X \rightarrow \mathbb{R} \tag{21}
\end{equation*}
$$

such that for all points $x, y, z \in X$ we have:

- $\rho(x, y) \geq 0$ and $\rho(x, y)=0$ if and only if $x=y$.
- $\rho(x, y)=\rho(y, x)$.
- (triangle inequality) $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$.

Definition 34 (Metric space). The set X with its metric ρ is called a metric space and is denotated by (X, ρ).
Definition 35. A set U in X is open if for all points $a \in U$, there is some real number $\epsilon>0$ such that

$$
\begin{equation*}
\{x:|x-a|<\epsilon\} \tag{22}
\end{equation*}
$$

is contained in U.

5.3 Standard topology on \mathbb{R}^{n}

The set of real numbers \mathbb{R} has a natural (Euclidian) notion of distance:

$$
\begin{equation*}
|a-b|=\sqrt{\left.\left(a_{1}-b_{1}\right)^{2}+\ldots+\left(a_{n}-b_{b}\right)^{2}\right)} \tag{23}
\end{equation*}
$$

where $a, b \in \mathbb{R}^{n}$.
Using this distance, it is possible to create equivalent definitions of open/closed sets and continuity for \mathbb{R}^{n}, to create the so called standard topology on \mathbb{R}^{n}.
Definition 36. A set U in \mathbb{R}^{n} will be open if given any $a \in \mathbb{R}^{n}$, there is a real number $\epsilon>0$ such that:

$$
\begin{equation*}
\{x:|x-a|<\epsilon\} \tag{24}
\end{equation*}
$$

is contained in U.
From this definition it follows that sets of the form $(a, b)=\{x: a<x<b\}$ are open, while sets of the form $[a, b]=\{x: a \leq x \leq b\}$ are closed.

Definition 37 (Standard topology). The collection of all open sets $(a, b)=\{x: a<x<b\}$ with $a, b \in \mathbb{R}^{n}$ is called the standard topology on \mathbb{R}^{n}.
Theorem 10. The standard topology on \mathbb{R}^{n} is Hausdorff.
Theorem 11 (Continuity). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. For all $a \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=f(a) \tag{25}
\end{equation*}
$$

if and only if for any open set $U \in \mathbb{R}^{m}$, the inverse image $f^{-1}(U)$ is open in \mathbb{R}^{n}.
Definition 38. A subset A is bounded in \mathbb{R}^{n} if there is some fixed real number r such that for all $x \in A$,

$$
\begin{equation*}
|x|<r \tag{26}
\end{equation*}
$$

Examples The interval (a, b) is bounded but not closed; the interval $[a, \infty)$ is closed but not bounded.
For the standard topology on \mathbb{R}^{n}, compactness is equivalent to the intuitive idea of being both closed and bounded. This equivalence is the goal of the following theorem.

Theorem 12 (Heine-Borel). A subset A of \mathbb{R}^{n} is compact if and only if it is closed and bounded.
Theorem 13. On the real line \mathbb{R}, a closed interval $[a, b]$ is compact.
Theorem 14. A subset A in \mathbb{R}^{n} is compact if every infinite sequence $\left(x_{n}\right)$ of points in A has a subsequence converging to a point in A.

In other words, if $\left(x_{n}\right)$ is a collection of points in A, there must be a point $p \in A$ and a subsequence $x_{n_{k}}$ with $\lim _{k \rightarrow \infty} x_{n_{k}}=p$.

References

[1] T. Garrity, All the math you missed (but need to know for graduate school), Cambridge, 2002.
[2] S. Abbott, Understanding analysis, Springer, second edition, 2015.
[3] C. Pugh, Real mathematical analysis, Springer, second edition, 2015.

[^0]: ${ }^{1}$ From now on we will assume an intuitive understanding of the symbols $0,1,2,3, \ldots$ and of the symbols \pm (plus or minus), $=$ (equal) and \neq (not equal).

[^1]: ${ }^{2}$ The symbol \rightarrow can be read as tends to or approaches.

